Model FMM-2 FM MODULATION MONITOR

Guide to Operations

©

EBLAME ELECTRONICS LABORATORY, INC.
119 LANCASTER AVENUE
P.O. BOX 76

DEVON, PA 19333-0076 USA
(610) 687-5550 • FAX (610) 687-2686
1 General Information 1
1-1 General Description 1
1-2 Physical Description 1
1-3 Electrical Description 1
1-4 Electrical and Mechanical Specifications 2
1-5 Accessories 3
2 Installation 4
2-1 Initial Inspection 4
2-2 Claims 4
2-3 Repacking for Shipment 4
2-4 Preparation for Use 5
2-5 Interconnections and Controls 6
3 Operation 8
3-1 Initial Operation 8
3-2 Normal Operation 8
3-3 Functions 9
3-4 Transmitter Measurements 10
3-5 Field Changes and Modifications 10
4 Maintenance 12
4-1 Field Calibration Procedure 12
5 Theory of Operation 14
5-1 FMM-2 A1 Board 14
5-2 FMM-2 A2 Board 14
6 Diagrams, Schematics and Parts Lists 18

1 General Information

1-1 General Description

The Belar FMM-2 FM Modulation Monitor (FCC ID: C459W1FMM-2) is a wideband FM monitor designed to meet the Federal Communications Commission requirements for measuring the total modulation characteristics of monaural as well as multiplexed FM transmitters having a center frequency range of 88 to 108 MHz . In addition, the FMM-2 may be used as a low distortion and low noise FM demodulator for driving audio monitor amplifiers and the companion Belar FMS-2 Stereo Modulation Monitor and SCM-2 SCA Modulation Monitor. The FMM-2 incorporates a deviation type modulation calibrator to insure the accuracy of the modulation measurements at any time.

1-2 Physical Description

The FMM-2 is constructed on a standard $51 / 4 \times 19$ inch EIA rack mount panel. Factory adjustments are located within the shielded compartment of the monitor. The AC power input, line voltage selector, RF and IF inputs and monitor outputs are located on the rear of the FMM-2 chassis on individual BNC connectors and on a card edge connector.

1-3 Electrical Description

The FMM-2 is a solid state, low sensitivity, crystal controlled, superheterodyne FM receiver incorporating a highly linear and stable digital pulse counting discriminator to demodulate the FM signal. Various metering and test provisions are contained within the monitor to measure transmitter output characteristics. These provisions include a selectable true-peak or FCC defined semi-peak modulation meter and thumbwheel controlled peak modulation indicator, both switchable to positive, negative or independent modulation polarity; metering circuits to set the incoming RF level; a standard deviation and zero deviation calibration oscillator to check monitor calibration and permit a sig-nal-to-noise test of the monitor and provisions for measurement of AM and FM noise. A carrier alarm and fixed 100\% peak modulation indicator are also provided.

Outputs obtained from the monitor include two composite wideband outputs for stereo and SCA monitoring; a de-emphasized audio output; balanced and unbalanced audio monitor outputs; modulation meter, 100% peak indicator, adjustable peak indicator and carrier alarm indicator.

1-4 Electrical and Mechanical Specifications

Frequency Range
88 to 108 MHz std.RF Input1 to 10 volts rms
50Ω, BNC connector
IF Input650 kHz from Belar RFA-1A RF Amplifier orBelar RFA-4 Frequency Agile RF Amplifier
Modulation Metering:
Deviation Indication 100% @ ± 75 kHz,0 to 133\% range
Accuracy $\pm 2 \%$ @ all modulation levels
Characteristics Selectable: peak (sample hold) or semi-peak
Noise Measurement:
FM Noise Range $-50 d B$ to -70 dB
AM Noise Range -50 dB to -70 dB
Test Function:
Calibrate Provides internal std. deviation reference
Zero Provides zero deviation for S / N
RF Level Calibrates AM noise function and carrier alarm reference level
Carrier Alarm Indicator adjusted for 90\% carrier level

Outputs:
Stereo Monitor Wideband, 1.5 V rms @ $1 \mathrm{k} \Omega$ unbalanced
SCA Monitor Wideband, 1.5 V rms @ $1 \mathrm{k} \Omega$ unbalanced
Audio (Program) $+10 \mathrm{dBm}, 600 \Omega$, balanced
Audio (Test) 5 V rms, $10 \mathrm{k} \Omega$, unbalanced
Audio Output Specifications
Frequency Response $\pm 0.01 \mathrm{~dB}$
Harmonic Distortion 0.01\% max
Intermodulation Distortion (SMPTE)
Signal-to-Noise Ratio $90 \mathrm{~dB}, \mathrm{~min}$
Remote Outputs:
Carrier Level Alarm Provides "open collector" output,capable of sinking 20 mA @ 15 Vdc
Meter, 100\% Peak Indicator, Adjustable Peak Indicator For interface to Belar Model MP-8 or MP-9 Remote Meter Panels (opt)
Dimensions 5114"H x 101⁄2"D x 19"W (EIA Rack Mount)
Power Consumption 10 watts, 117/234 Vac, $50 / 60 \mathrm{~Hz}$
Shipping Weight 13 lbs

1-5 Accessories

The Belar FMM-2 FM Modulation Monitor may be used for remote monitoring of an FM transmitter with the Belar MP-8 or MP-9 Remote Meter Panel, or, for off-air monitoring, with the Belar RFA-1 FM RF Amplifier, the Belar RFA-1A FM RF Amplifier, or the Belar RFA-4 Frequency Agile RF Amplifier. The MP-8 and MP-9 meter panels contain a total modulation meter and carrier alarm, adjustable peak modulation and 100% modulation LEDs. The MP-8 also serves as remote metering for the FMS-2 Stereo Modulation Monitor, and includes metering for left and right channels along with a stereo pilot LED indicator.

The RFA-1 and RFA-1A RF Amplifiers provide pre-amplification and selectivity to permit direct off-air monitoring with the FMM-2. The RFA-4 adds frequency agility.

2 Installation

2-1 Initial Inspection

Check the shipping carton for external damage. If the carton exhibits evidence of abuse in handling (holes, broken corners, etc.) ask the carrier's agent to be present when the unit is unpacked. Carefully unpack the unit to avoid damaging the equipment through use of careless procedures. Inspect all equipment for physical damage immediately after unpacking. Bent or broken parts, dents and scratches should be noted. If damage is found, refer to Paragraph 2-2 for the recommended claim procedure. Keep all packing material for proof of damage claim or for possible future use.

The FMM-2 is shipped with an instruction book, three wire line cord, four beige rack mount screws, and a 10 position, dual readout remote connector.

2-2 Claims

If the unit has been damaged, notify the carrier immediately. File a claim with the carrier or transportation company and advise Belar of such action to arrange the repair or replacement of the unit without waiting for a claim to be settled with the carrier.

2-3 Repacking for Shipment

If the unit is to be returned to Belar, attach a tag to it showing owner and owner's address. A description of the service required should be included on the tag. The original shipping carton and packaging materials should be used for reshipment. If they are not available or reusable, the unit should be repackaged in the following manner:
a. Use a double-walled carton with a minimum test strength of 275 pounds.
b. Use heavy paper or sheets of cardboard to protect all surfaces.
c. Use at least 4 inches of tightly packed, industry approved, shock absorbing material such as extra firm polyurethane foam or rubberized hair. NEWSPAPER IS NOT SUFFICIENT FOR CUSHIONING MATERIAL.
d. Use heavy duty shipping tape to secure the outside to the carton.
e. Use large FRAGILE labels on each surface.
f. Return the unit, freight prepaid, via air freight. Be sure to insure the unit for full value.

2-4 Preparation for Use

The FMM-2 Modulation Monitor is designed to be mounted in a standard 19-inch rack. When mounted in a rack, a slight air space should be provided above and below the unit. When the monitor is mounted above high heat generating equipment such as vacuum-tube power supplies, consideration should be given to cooling requirements which allow a free movement of cooler air through and around the FMM-2. In no instance should the ambient chassis temperature be allowed to rise above $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

The Model FMM-2 can be operated from either a 105 to 125 Vac or 210 to 250 Vac single phase, 50 to 60 Hz power source. Make sure the unit is set for the proper voltage as follows:

Units with serial number 161719 and lower:
Unplug the line cord. Slide the switch (S1) to 115 V or 230 V position. Ensure that the fuse (F1) is the proper current rating for selected voltage ($1 / 2$ A 250 V for $115 \mathrm{Vac}, 1 / 4 \mathrm{~A} 250 \mathrm{~V}$ for 230 Vac). Plug the line cord back in.

Units with serial number 161720 and higher:
Unplug the line cord. Open the fuse compartment door and pull lever to remove fuse. Using needlenose pliers, pull the voltage select board straight out of the power entry module. While facing the rear of the unit, orient the voltage select board so the desired line voltage is face up and reads correctly ("120" for 115Vac operation, "240" for 230Vac operation. The "100" and "220" positions on the bottom of the board are not used.) Reinsert the board into the power entry module, install the proper fuse ($1 / 2 \mathrm{~A} 250 \mathrm{~V}$ for $115 \mathrm{Vac}, 1 / 4 \mathrm{~A} 250 \mathrm{~V}$ for 230 Vac), close the fuse door, and plug the line cord back in.

If you are using the FMM-2 at the transmitter, or with the Belar RFA-1:
Set the input selector slide switch to the RF position. Connect a 50Ω coaxial cable (such as RG-174 or RG-58) between the monitor probe on the transmitter (or RF amplifier) and the RF input connector J2 at the rear of the main chassis.

CAUTION: DO NOT APPLY MORE THAN 10 VOLTS RF TO THE MONITOR OR THE RF INPUT LEVEL CONTROL (CARRIER SET) MAY BE DAMAGED.

If you are using the FMM-2 with the Belar RFA-1A RF amplifier or the Belar RFA-4 Frequency Agile RF Amplifier:

Set the input selector switch to the IF position. Connect a 50Ω coaxial cable (such as RG-174 or RG-58) between the IF out jack on the RF Amplifier (Belar RFA-1A or Belar RFA-4 only) and the IF input connector J3 at the rear of the main chassis.

If desired, connect an external aural monitoring amplifier to pins 1 and 2 on the remote connector. This is a balanced 600Ω output. Pin 3 or Pin 4 may also be used, but note that these outputs are $10 \mathrm{k} \Omega$, unbalanced, with pins B and C connected to ground.

A remote total modulation meter may be connected to pin 5 on the remote connector, with a total loop resistance of 3750Ω. Pins $8 / 9,7$ and 6 may be connected to LEDs to remotely indicate carrier level alarm, adjustable peak modulation and 100% peak modulation respectively. A current limiting resistor, typically 160Ω, should be connected in series with the LEDs. A +5 Vdc source is available on pin 10. Ground is available on pins A thru L.

The Belar MP-8 Remote Meter Panel contains an illuminated total modulation meter and LEDs for the above indicators, along with the necessary meter calibration and LED current limiting resistors.

2-5 Interconnections and Controls

Model FMM-2 Rear Panel Jacks

JACK Function

J2 RF Input: set input selector switch to this direction and use this jack when using transmitter sample or Belar RFA-1 RF Amplifier

J3 IF input (650 kHz): set input selector to this direction and use this jack when using IF output from Belar RFA-1A RF Amplifier or Belar RFA-4 Frequency Agile RF Amplifier

J4 $11 / 2 \mathrm{Vrms} @ 1 \mathrm{k} \Omega$, unbalanced, composite wideband output to SCA monitor
J5 11⁄2 Vrms @ $1 \mathrm{k} \Omega$, unbalanced, composite wideband output to stereo monitor
J6 Test audio output, $10 \mathrm{k} \Omega$, unbalanced, de-emphasized

NOTE: WE RECOMMEND COAXIAL CABLES $36^{\prime \prime}$ OR SHORTER WHEN CONNECTING THE FMM-2 TO A STEREO MONITOR AND/OR SCA MONITOR.

Model FMM-2 Remote Connector

Pin Function
1 Audio out, 600Ω, balanced (de-emphasized) (-)
2 Audio out, 600Ω, balanced (de-emphasized) (+)
3 Audio out, $10 \mathrm{k} \Omega$, unbalanced (de-emphasized)
4 Audio out, 10k Ω, unbalanced (de-emphasized)
5 Remote total modulation meter

6 Remote 100\% peak LED
7 Remote Adjustable peak LED
8 Remote Carrier alarm
9 Remote Carrier alarm
$10+5 \mathrm{Vdc}$
A-L Ground

3 Operation

3-1 Initial Operation

1. Before applying power, ensure that the meters read 0%. If not, use a small screwdriver to turn the meter adjust screws (below the meters on the front panel) so that they read 0%.
2. Ensure that the rear panel input selector switch is set to match the proper input (RF for transmitter sample or if used with Belar RFA-1 RF Amplifier; IF if used with Belar RFA-1A RF Amplifier or Belar RFA-4 Frequency Agile RF Amplifier) and that the carrier set control is turned to its maximum counterclockwise position.
3. Plug in the line cord, depress the ZERO switch and allow a 15 minute warm up.
4. Depress the CAL switch and check for a 100% reading.
5. (RF INPUT ONLY) Apply the RF input to the RF input jack, depress the front panel RF LEVEL switch and adjust the carrier set control (R1) until the meter reads 100%. The FMM-2 will operate with as liftle as 20%, but a 100% level is required to calibrate the AM noise measurement.
6. Depress the OPERate switch and the FMM-2 is now ready for operation.

3-2 Normal Operation

For normal operation, leave the FMM-2 in OPERate position. Changes in RF level will not affect the accuracy of modulation measurements.

The PEAK MOD thumbwheel switch is usually set to the maximum allowable peak modulation according to the services being transmitted, and the PEAK MOD LED will flash at this preset level or greater.

The CARRIER ALARM LED will illuminate when the carrier falls below 90% of the preset level (as set in 3-1, step 5, above).

3-3 Functions

OPERATE - When depressed, places the unit into operation. In this mode, the modulation meter as well as the PEAK MOD and 100% modulation indicators are independent of modulation polarity.

PLUS - When depressed, places the unit into operation. The modulation meter, PEAK MOD and 100% indicators measure positive modulation excursions.

MINUS - When depressed, places the unit into operation. The modulation meter, PEAK MOD and 100% indicators measure negative modulation excursions.

CAL - When depressed, applies a standard deviation to the monitor to check modulation calibration.

ZERO - When depressed, applies a zero deviation calibration oscillator to the monitor. This function permits a signal-to-noise ratio test of the monitor.

RF LEVEL (RF INPUT ONLY) - When depressed, measures the RF level applied to the monitor. When the RF is set to 100%, the AM NOISE function is correctly calibrated.

PEAK - When depressed, places the meter into a true peak reading mode by introducing a sample-hold circuit into the metering circuit.

SEMI - When depressed, returns the metering circuit to a semi-peak mode that conforms to the FCC modulation meter requirements.

FM NOISE - When depressed, inserts a 50 dB gain, de-emphasized, metering amplifier into the circuit so that with an unmodulated carrier applied to the monitor, a monaural signal-to-noise ratio measurement can be made. Note that a $100 \%(0 \mathrm{~dB})$ reading is now -50 dB and a -20 dB reading is now -70 dB . Thus the algebraic sum of the meter reading and -50 dB is the noise reading.

AM NOISE - When depressed, applies the 50 dB gain, de-emphasized, metering amplifier to the AM noise detector and amplifier so that an AM noise measurement can be made. When the RF level is set to 100%, the circuit is calibrated to read AM noise directly, with a 100% (0 dB) meter reading representing -50 dB . Again the algebraic sum of the meter reading and -50 dB is the noise reading.

MODULATION METER - Measures modulation, RF level, FM noise, or AM noise, depending on the function selected.

PEAK MOD THUMBWHEEL - Pre-sets, in 1% increments, the PEAK MODulation indicator to light at the indicated modulation setting. This circuit follows the modulation polarity set by the function switch.

CARRIER ALARM INDICATOR - Indicates when the carrier level falls below 90\%.

PEAK MOD INDICATOR - Indicates when the modulation level equals or exceeds the level set by the PEAK MOD thumbwheel. This indicator follows the modulation polarity set by the function switch.

100\% MOD INDICATOR - Indicates when the modulation level equals or exceeds 100\%. This indicator follows the modulation polarity set by the function switch.

3-4 Transmitter Measurements

Normal transmitter proof-of-performance measurements may be made with the FMM-2. Distortion measurements may be made through the audio test jack on the rear of the chassis. Five volts rms is available at 100% modulation so that most distortion analyzers may be used. The audio test output and the remote audio outputs are de-emphasized according to the standard $75 \mu \mathrm{sec}$ curve, while the modulation meter has a flat frequency response characteristic which follows the pre-emphasized audio curve.

3-5 Field Changes and Modifications

If not performed by request at the time of manufacture, the following changes may be made in the field:

Audio De-emphasis

The FMM-2 standard de-emphasis curve ($75 \mu \mathrm{sec}$) may be changed to $50 \mu \mathrm{sec}$ de-emphasis by substituting $2600 \mathrm{pF} \pm 2 \frac{1}{2} \%$ polystyrene capacitors for the 3900 pF capacitors (C27 \& C37) located on the A2 circuit board.

C27 controls the audio output de-emphasis and C37 controls the de-emphasis in the noise metering amplifier.

Frequency Change

1. Unplug crystal (Y 1) on the A 1 circuit board and plug in new crystal.
2. Unplug green lead from RF input pin (pin 4) on A1 circuit board.
3. Place FMM-2 into operation and depress the RF LEVEL switch.
4. Adjust the slug in the oscillator coil (L3) for maximum reading on meter (typically $20 \%-60 \%$). Note this reading.
5. Turn L3 slug counter-clockwise until meter reading just reaches a minimum value (typically $0 \%-10 \%$). Note this value.
6. Now turn L3 so meter reads at or just above the midpoint of the minimum and maximum values you noted above.
7. Reconnect the green wire to the RF input pin (pin 4).

4 Maintenance

4-1 Field Calibration Procedure

1. Warm up the FMM-2 in the ZERO mode for 15 minutes.

A2 Board

2. With the monitor in the ZERO mode, measure the width of the pulse seen at pin 7 of U5. With the Pulse Width potentiometer (R6), set the pulse width to 440 nsec.
3. Set an external low distortion FM signal generator to the assigned frequency and apply its output to the RF jack (J2). Adjust the generator output level for 100% indication in the RF LEVEL mode. Modulate the generator with 1 kHz at about 75 kHz peak deviation. Adjust the Meter Balance potentiometer (R76) so that the modulation meter indication in the SEMI mode does not change when switching between PLUS and MINUS positions.
4. Place the monitor in the CALibrate mode and adjust the Calibrate potentiometer (R28) for 100% indication on the modulation meter.
5. Apply a 1 Vrms RF signal at precise carrier frequency to the RF jack (J2) on the rear panel. With the unit in the OPER mode, measure the DC voltage at pin 6 of U8. Adjust the Offset potentiometer (R38) for a reading of 0.0 volts (within 50 mv).
6. To adjust the fixed red 100% peak flasher, place the monitor in the CALibrate mode. Adjust the 100\% Flasher Adjust potentiometer (R92) so that the 100\% LED just comes on.
7. To set the adjustable, yellow PEAK MOD flasher, set the thumbwheel switch to read "100" and place the monitor in the CALibrate mode. Adjust the Peak Mod Flasher Adjust potentiometer (R89) so that the PEAK MOD flasher just comes on.
8. Apply the 1 Vrms output of an FM generator set to carrier frequency to the RF jack. FM modulate the generator with 200 Hz audio to 100% FM modulation as indicated on the monitor in the OPER mode. Using an audio attenuator, reduce the FM modulation level of the generator 50 decibels. Switch the monitor to the FM NOISE position. Adjust the FM Noise potentiometer (R119) for a reading of 100% on the modulation meter.
9. Apply the output of an AM signal generator at carrier frequency to the RF input jack. Adjust the generator output level to obtain a reading of 100% on the meter in the RF LEVEL mode. Modulate the generator to 100\% AM modulation with 200 Hz audio. Using an audio attenuator reduce the modulation level 50 decibels. Switch the monitor to the OPERate and AM NOISE modes and adjust the AM Noise potentiometer (R117) for a reading of 100% on the meter.

A1 Board

10. Apply an unmodulated RF signal at carrier frequency to the RF input jack (J2). Place the monitor in the RF LEVEL mode and adjust the generator output level for a reading of 90% on the monitor meter. Adjust the Carrier Alarm potentiometer (R18) on the RF board (A1) so that the front panel red CARRIER ALARM LED lights when the RF level indication goes below 90%.

5 Theory of Operation

5-1 FMM-2 A1 Board

Q1 is the active element of a crystal oscillator operating 650 kHz offset from the carrier frequency. It is activated by the application of -15 volts which occurs when the chassis switch is in the "RF" position. The oscillator output is coupled to the gate of Q2, a junction FET acting as an active mixer. Incoming RF is applied to the source of Q2, and the sum and difference mixer products appear at the drain. A pi output filter removes the upper product, leaving a 650 kilohertz modulated IF signal for application to the A2 board through the chassis input selector switch.

The input RF signal is also rectified by a high-frequency diode, filtered, and applied to non-inverting amplifier U1. The output of U1 thus consists of an amplitude modulated DC signal in which the ac component is proportional to the AM component of the carrier and a dc component proportional to the amplitude of the carrier. The output of U 1 is connected through a series resistor to the A2 board where it is either applied directly to the chassis meter for RF LEVEL readings or ac coupled to the noise amplifier for AM NOISE readings. The series resistance controls meter damping in the RF LEVEL mode.

The output of U1 is also applied to the inverting input of comparator U2. When this voltage, corresponding to a relative carrier level, falls below the reference voltage set by the associated voltage divider and trimpot, the output of U2 goes high. This turns on Q3, lighting the CARRIER ALARM LED on the front panel. When the monitor is accepting IF inputs, -15 V through the rear panel input switch biases pin 2 of U 2 to a negative voltage, disabling the CARRIER ALARM function.

5-2 FMM-2 A2 Board

Discriminator. U1 supplies regulated +5 V to U 2 , the input signal limiter and U 3 , the detecting monostable. Diode switching controls input signal selection. An IF input is selected in all operating modes except CALibrate and ZERO. In these two modes, the limiter is fed a 650 kHz signal from crystal oscillator transistor Q1.

During normal operation, the monostable, U3, is triggered on negative transitions of the limiter. It generates an inverted output pulse of approximately 440 nsec duration which is applied to an inverting digital level translator, U5. Approximately +7.35 volts is supplied to U5 by regulator U6. The stream of positive-going output pulses is applied to the integrating filter through an emitter follower. The detected signal is inverted and amplified by differential amplifier U7. The average dc value of the pulse train is canceled in U7 by applying a positive voltage from U6 to the non-inverting input of U7. U7 drives a phase equalizer and, in turn, non-inverting amplifier U8, which provides full level for the composite baseband output (the STEREO and SCA outputs on the rear panel).

In the CALibrate mode, U4, a digital oscillator circuit, alternately enables and disables the monostable with a 50% duty cycle at a 2395 Hz rate. With the 650 kHz signal from the crystal oscillator applied to the input of the monostable, this is equivalent to detecting a squarewave modulated signal of 650 kHz peak-to-peak deviation. An RC attenuation and wave-shaping circuit at the output of U8 reduces the amplitude of the detected calibration signal to that corresponding to a standard 75 kHz -deviation signal. The CALibrate switch not only selects the output of the wave-shaping circuit for the CALibrate function, but disables the phase equalizer, thus eliminating a precursor in the calibration wave form that would cause erroneous readings. The output of U8 selected by the CALibrate button feeds the STEREO and SCA output jacks through a $1 \mathrm{k} \Omega$ series resistor and a shunt analog switch. (See the Muting Circuits section that follows.)

In ZERO mode the discriminator is fed an unmodulated 650 kHz signal from the crystal oscillator. (Diodes are employed on the main board to switch the discriminator between the IF and oscillator inputs.)

Output. U9 buffers the selected output of $\mathrm{U8}$ and feeds the detected signal to the other output and metering circuitry. U10 is a non-inverting amplifier with a 75 microsecond de-emphasis characteristic which provides the AUDIO TEST output and two auxiliary high-impedance outputs. Inverting amplifier U11 and non-inverting amplifier U12 provide a $+10 \mathrm{dBm}, 600 \Omega$, balanced, and de-emphasized output for aural monitoring.

Metering. U9 also drives non-inverting amplifier U13 and inverting amplifier U14 which feed the metering, flasher, and muting circuits. The outputs of U13 and U14 feed the metering and flasher circuits through $2.2 \mathrm{k} \Omega$ resistors. The PLUS and MINUS polarity switches select the appropriate signal polarity by shorting the resistor output corresponding to the opposite signal polarity to ground. U15, U16, and U17, working in conjunction with U13 and U14, comprise an active full-wave peak rectifying circuit. If the feedback paths of U15 and U16 were closed between the cathodes of their series output diodes and their inverting inputs; they would act as half-wave rectifiers. Since the feedback is from the combined outputs through U17, the amplitude of the larger of the inputs to U 15 and U 16 appears at the output of U 17 . Since U 13 and U 14 provide signals of equal amplitude and opposite polarity, the complete circuit acts as a full-wave rectifier. The output of U17 is applied to the chassis meter through a resistive divider, which controls meter damping, and the metering section of the front-panel switch assembly. A low resistance R-C protection network (R59, R60 and C30) allows coupling of external meters to U17 as well. Meter ballistics in the SEMI-peak mode are controlled by an R-C network (C31, R67) at the U15-U16 output. Decay of the DC peak is controlled by the $5.6 \mathrm{M} \Omega$ resistor which is grounded through the metering switch assembly in the SEMI-peak mode. In PEAK mode, a sample-hold circuit is employed which stops the discharge of the metering capacitor for approximately 150 milliseconds each time a new peak is reached. When the higher voltage of the two outputs of U13 and U14, (possibly controlled by the setting of the PLUS or MINUS switches) falls below the output voltage
of U17, the output of comparator U18 falls, triggering a non-retriggerable monostable in U19. The output of the monostable goes low for 150 milliseconds, turning Q6 off and breaking the discharge path through the $5.6 \mathrm{M} \Omega$ resistor to the metering capacitor. Once the 150 milliseconds passes, with Q 6 now on, metering ballistics remain the same as those in SEMI-peak until the next peak is reached.

Flashers. The outputs of U13 and U14 are combined through diodes so that the more negative voltage of their two outputs (possibly controlled by the setting of the PLUS or MINUS switches) is applied to non-inverting buffer U23. The output of U23 is applied to one input of U26, the comparator for the adjustable PEAK MODulation flasher, and one input of U28, the comparator for the 100% flasher. The trigger reference voltage for the PEAK MOD flasher is set by U25 and U24, in conjunction with the thumbwheel switch. U25 provides a regulated +5 V which is applied the inverting input of amplifier U24 through the variable resistance of the thumbwheel switch. As the dialed modulation percentage on the thumbwheel is increased, the series resistance of the thumbwheel switch assembly decreases. With decreased resistance, the gain of inverting amplifier U24 is increased, resulting in a more negative reference voltage applied to U26. When the modulation-induced negative excursion swings below the negative reference from U24, the output of U26 goes low, triggering a retriggerable monostable in U29. The monostable turns on Q5, which lights the yellow PEAK MOD LED for approximately 3 seconds.

The negative trigger reference voltage for the 100% flasher is derived from an adjustable voltage divider fed from -5 V regulator U27. This voltage is applied to the inverting input of U28. Again, when the modulation-induced negative excursion swings below this reference voltage, the output of U28 goes low, triggering a second retriggerable monostable in U29. This in turn, via Q4, lights the 100\% LED for approximately 120 milliseconds.

Average Noise Metering. U30, U31, and U32 and associated circuitry comprise a de-emphasized, full-wave averaging voltmeter with 50 dB amplification for making FM and AM noise measurements. U3O is a de-emphasis amplifier with a low-frequency gain of approximately 26 dB . U31 and U32 are the active elements of a full-wave rectifying circuit with gain. Since the rectifying diodes are in a feedback loop, the effect of diode cut-in voltage is minimized. The chassis meter is fed through a series resistance which controls meter damping. In the FM NOISE and AM NOISE positions, the front panel switches disconnect the chassis meter from the output of U17 and connect it to the output of U32. The input to U30 is appropriately switched to the output of U8 in the FM position or to the rectified carrier (AM detected) output of the A1 RF-MIXER card in the AM position. Gains in the two modes are controlled by series trimmer resistors.

In the RF LEVEL position, the monitor remains in operation, but the chassis meter is connected directly to the rectified carrier output of the A1 RF MIXER card. The relative dc level of the carrier is thus registered.

Muting Circuits. Because of the large amplitude of the impulse voltages that occur during mode changes, a muting system is employed in the metering and output circuits. Muting is activated by peaks in the 240% to 260% modulation range. The outputs of U13 and U14 are combined ahead of the polarity switching resistors through diodes and applied to the inverting input of U20. When the more positive of their two outputs exceeds the threshold set by the voltage divider at the non-inverting input, the output of U20 goes low, firing a retriggerable monostable in U19. One output of this monostable remains high for a minimum of 270 milliseconds and performs two functions. The positive pulse is applied to the control gates of three analog switches in U21. Two of these switches are connected in parallel to ground and clamp the output of U9 to ground through a series resistance and the dc blocking capacitor. The third switch is connected between a series resistor in the composite baseband output circuit and ground and serves to greatly attenuate the composite baseband signal when activated by U19. The high at pin 6 of U19 also serves to turn on Q7, discharging the metering capacitor. At the same time, the Q output at pin 7 of U19 clears the sample-hold monostable, turning on Q6 and providing the additional $5.6 \mathrm{M} \Omega$ discharge path for the metering capacitor.

To prevent excessive positive excursions of extended duration from being passed to the output jacks (as would occur when the input signal is removed from the monitor in the OPERate mode), a second muting circuit is employed. The composite baseband output signal line, ahead of the series muting resistor, is applied to the non-inverting input of comparator U22. When the output voltage exceeds the reference voltage applied to the inverting input from a voltage divider, the output of U22 rises. This turns on an analog switch in U21, shunting most of the output signal to ground.

6 Diagrams, Schematics and Parts Lists

Replaceable Parts. This page contains information for ordering replaceable parts for the monitor. The tables that follow list the parts in alphanumeric order by reference designation and provides a description of the part with the Belar part number.

Ordering Information. To order a replacement part from Belar, address the order or inquiry to Belar and supply the following information:
a. Model number and serial number of unit.
b. Description of part, including the reference designation and location.

Orders may also be taken over the telephone. Parts orders can be put on your VISA, MasterCard, or American Express card, or we can ship them COD.

REFERENCE DESIGNATORS

A	= assembly	J	= jack	S	= switch
BR	= diode bridge	L	= inductor	T	= transformer
C	= capacitor	M	$=$ meter	TB	= terminal block
CR	= diode or LED	P	= plug	U	= integrated circuit
DS	= display or lamp	Q	= transistor	W	= cable
F	= fuse	R	= resistor	X	= socket
FL	= filter	RL	= relay	Y	= crystal
HDR	= header connector	RN	= resistor network		

ABBREVIATIONS

BCD	= binary coded decimal	PIV	= peak inverse voltage
CER	= ceramic	POLY	= polystyrene
COMP	= composition	PORC	= porcelain
CONN	= connector	POT	= potentiometer
DPM	= digital panel meter	SEMICON	= semiconductor
ELEC	= electrolytic	SI	= silicon
GE	= germanium	TANT	= tantalum
IC	= integrated circuit	uF	$=$ microfarads
k	$=$ kilo $=1,000$	V	= volt
M	$=\mathrm{meg}=1,000,000$	VAR	= variable
MOD	$=$ modulation	VDCW	= dc working volts
MY	$=$ mylar	W	= watts
PC	$=$ printed circuit	WW	= wirewound
pF	$=$ picofarads		

FMM-2 FRONT PANEL

FMM-2 PARTS LISTS

$11-z 401$
GION $3 \exists 5$
$9-2 S$ WOY」
刃
号
苛
N
N
n
n
苟
z
m
ω
ω

 INTERCONNECIION DETAILS REFER TO CHASSIS HIRING DIAGRRII．

A1 BOARD FMM-2

Reference

Designation	Description				
C1	C :	FIXED	ceramic o	0.001 uF	F 1 kV
C2, C3	C :	FIXED	ceramic o	0.01 uF	100 V
C4	C:	FIXED	MICA 24 pF	F 5\%	
C5	C:	FIXED	MICA 51 pF	F 5\%	
C6	C:	FIXED	MICA 10 pF	F 5\%	
C7, 88	C:	FIXED	CERAMIC 1	1.0 uF 5	50 V
C9, C10	C:	FIXED	MICA 10 pF	F 5\%	
C11, C12		FIXED	MICA 250 p	pF 5\%	
C13	C:	FIXED	CERAMIC	0.001 uF	F 1 kV
C14,C15	C :	FIXED	ceramic o	0.01 uF	100 V

CR1
DIODE: AA119
СНОКЕ: 47 uH
CHOKE: 5.6 uH
COIL: ADJ, BELAR
TRANSISTOR: 2N5179
TRANSISTOR: 2N3819
TRANSISTOR: 2N4401
R1
R2
R3
R4
R5
R6
R7,R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
U1
IC: MC1741
U2 IC: LM311 1826-0009

Y
CRYSTAL: OFFSET 650 kHz FROM CARRIER FREQUENCY

$$
1900-0001
$$

$$
9140-0003
$$

$$
9140-0004
$$

$$
9140-0025
$$

$$
1850-0023
$$

$$
1850-0001
$$

$$
1850-0028
$$

1826-0006
Part Number

$$
\begin{aligned}
& 0151-0002 \\
& 0151-0003 \\
& 0140-2405 \\
& 0140-5105 \\
& 0140-1005 \\
& 0151-0008 \\
& 0140-1005 \\
& 0140-2515 \\
& 0151-0002 \\
& 0151-0003
\end{aligned}
$$

0751-6822
0751-2222
0751-1022
0751-5112
0751-5102
0751-5622
0751-1522
0751-5112
0771-5112
0751-2212
0751-3022
0751-4732
0751-3322
0751-6822
0751-8222
0751-5122
2100-0021
0751-2022
0751-8222
0751-1532
0683-1065
0751-1232
0751-1012

FMM-2 A2 BOARD
PART LOCATIONS


```
FMM-2 A2 BOARD
PART LOCATIONS
    CONT.
```

```
Desig/Loc Desig/Loc
---\cdots-------------
    S1 F5 1 A1
        2 A1
    U1 C3 3 C1
    U2 B2 4 C1
    U3 B3 5 D1
    U4 C3 6 D 1
    U5 A4 
    U6 B4 8 D1
    U7 C6 9
    U8 C7 10 E1
    U9 F6 11 E1
U10 C9 12 F3
U11 B9 13 E3
U12 B9 14 E3
U13 E4 15 E3
U14 E5 16 D3
U15 D4 17 D3
U16 D5 18 E7
U17 D7 19 E7
U18 D6 20 B9
U19 D6 21 B9
U20 E6
U21 E6
U22 E7
U23 E3
U24 F2
U25 E3
U26 E2
U27 F2
U28 E2
U29 D2
U30 F9
U31 E9
U32 D9
    Y1# C2
#BEGINNING SERIAL NUMBER 162080: C7 thru C11, Q1, R11 thru
    R15 AND Y1 ARE REPLACED BY THE A2-1 BOARD.
```


Reference

Designation

C1 thru C4	C: FIXED	CERAMIC 0.1uF 50 V	0151-0006
C5	C: FIXED	CERAMIC 1.0UF 50V	0151-0008
C 6	C: FIXED	MICA 75pF 5\%	0140-7505
C7, C8 (note 1)	C: FIXED	CERAMIC 0.01 uF 100 V	0151-0003
C9 (note 1)	C: FIXED	POLY 1000pF 2.5\% 160V	0130-1022
C10 (note 1)	C: FIXED	POLY 510pF 2.5\% 160 V	0130-5112
C11 (note 1)	C: FIXED	MICA 36pF 5%	0140-3605
C 12	C: FIXED	CERAMIC 1.0UF 50V	0151-0008
C 13	C: FIXED	MICA $22 \mathrm{pF} 5 \%$	0140-2205
C14	C: FIXED	ELEC 47 uF 50 V	0180-0017
C 15	C: FIXED	CERAMIC 1.0uF 50 V	0151-0008
C 16	C: FIXED	CERAMIC 0.1 uF 50 V	0151-0006
C 17	C: FIXED	POLY 270pF 2.5\% 160V	0130-2712
C18	C: FIXED	POLY 3900pF 2.5\% 160 V	0130-3922
C 19	C: FIXED	POLY 820pF 2.5\% 160V	0130-8212
C 20	C: FIXED	CERAMIC 0.05 uF 75 V	0151-0005
C 21	C: FIXED	TANT 15 uF 15 V	0185-0003
C22	C: FIXED	ELEC 47 uF 50 V	0180-0017
C23	C: FJXED	POLY $1000 \mathrm{pF} 2.5 \% 160 \mathrm{~V}$	0130-1022
C24, C25	C: FIXED	ELEC 100uF 35V	0180-0018
C26	C: FIXED	CERAMIC 1.0UF 50 V	0151-0008
C27	C: FIXED	POLY $3900 \mathrm{pF} 2.5 \% 160 \mathrm{~V}$	0130-3922
C28, C29	C: FIXED	CERAMIC 0.1 uF 50 V	0151-0006
C30	C: FIXED	CERAMIC 0.01uF 100V	0151-0003
C 31	C: FIXED	FILM 0.047 uF 10\% 200 V	0120-4731
C32	C: FIXED	CERAMIC 0.1 uF 50 V	0151-0006
C33	C: FIXED	CERAMIC 0.01 uF 100 V	0151-0003
C34	C: FIXED	CERAMIC 1.0uF 50V	0151-0008
C35	C: FIXED	CERAMIC 0.1 uF 50 V	0151-0006
C 36	C: FIXED	FILM 0.22uF 10\% 80V	0120-2241
C 37	C: FIXED	POLY 3900pF 2.5\% 160V	0130-3922
C38	C: FIXED	FILM $0.22 \mathrm{uF} 10 \% 80 \mathrm{~V}$	0120-2241
C39	C: FIXED	TANT 15 uF 15 V	0185-0003
C40	C: FIXED	CERAMIC 1.0uF 50V	0151-0008
C41	C: FIXED	TANT 6.8 uF 25 V	0185-0002
$\mathrm{C} 42 \mathrm{thru} \mathrm{C45}$	C: FIXED	CERAMIC 0.1 uF 50 V	0151-0006
C46, C47	C: FIXED	ELEC 330uF 20 V	0180-0022
C48, C49	C: FIXED	TANT 6.8 uF 25 V	0185-0002
C50, C51	C: FIXED	CERAMIC 0.1 uF 50 V	0151-0006
C 52	C: FIXED	MICA $75 \mathrm{pF} 5 \%$	0140-7505
C53	C: FIXED	CERAMIC 0.1 uF 50 V	0151-0006
C54	C: FIXED	CERAMIC 0.001 uF 1 kV	0151-0002
CR1	DIODE: 1N	N446	1900-0002
CR2	DIODE: IN	753A	1900-0006
CR3, CR 4	DIODE: 1N	N4446	1900-0002
CR5	DIODE: IN	749 A	1900-0018
CR6	DIODE: AA	119	1900-0001
CR 7, CR 8	DIODE: 1N	N4446	1900-0002
CR9	DIODE: AA	119	1900-0001.

A2 BOARD FMM-2 CONT.

Reference
Designation

CR10, CR11		DIODE:	1N4446
CR12		DIODE:	AA119
CR13		DIODE:	1N4446
CR14, CR15		DIODE:	AA119
CR16		DIODE:	1N4446
CR17, CR18		DIODE:	AA119
CR19 thru	CR22	DIODE:	1N4446
CR23, CR24		DIODE:	AA119
CR25 thru	CR30	DIODE:	1N4446
CR31, CR32		DIODE:	1N4006
CR33, CR34		DIODE	1N755

FL1

L 1
L2

Q1 (note 1)
Q2
Q 3
Q4 thru Q7

R1
R2
R3
R 4
R 5
R6
R 7
R 8
R9
R10
R11 (note 1)
R12 (note 1)
R13 (note 1)
R14 (note 1)
R15 (note 1)
R16
R17
R1 8
R19, R20
R21
R22,R23
R2 4
R25
R26
R27
Description

DIODE: 1N4446 1900-0002
DIODE: AA119
DIODE: 1 N4446
IODE: AA119

DIODE: AA119
DIODE: 1 N444
DIODE: 1N4446

DIODE: 1N755A

FILTER: BELAR LPF

INDUCTOR: BELAR 65T
INDUCTOR: BELAR 37T

TRANSISTOR: 2N914
1900-0001
1900-0002
1900-0001
1900-0002
1900-0001
1900-0002
1900-0001
1900-0002
1900-0016
1900-0023

9120-0009

9140-0039
9140-0038

1850-0006
TRANSISTOR: 2N4401
TRANSISTOR: 2N4037
1850-0028
1850-0011
1850-0028

0683-1035
0683-2025
0683-1025
0683-1125
0683-1325
2100-0023
0721-7501
0683-1025
0683-1535
0683-1035
0683-2225
0683-5.115
0683-3935
0683-6225
0683-3935
0683-4725
0683-1025
0683-1005
0683--1025
0721-1212
0683-3325
0811-0012
0721-8660
0721-1001
0721-6191

Reference

Designation
R28
R29
R30
R31
R 32
R33
R34
R35
R 36
R37
R 38
R39
R40
R41
R42
R43
R44,R45
R46
R47 thru R49
R 50
R 51
R52 thru R54
R 55
R 56
R57
R 58
R59, R60
R61
R62
R63
R64
R65
R66
R67
R68
R69
R70
R 71
R 72
R 73
R74,R75
R76
R77
R78
R79
R80
R81
R82
R83

Description
R: VAR COMP $1 \mathrm{k}, 10$ TURN
not used
R: METAL FILM 866 1\%
R: FIXED CARBON $1005 \% 1 / 4 W$
R: METAL FILM $1.00 \mathrm{k} 1 \%$
R: METAL FILM 1. 10k 1\%
R: METAL FILM $5.11 \mathrm{k} 1 \%$
R: METAL FILM 1.37k 1\%
R: METAL FILM 432 1\%
R: METAL FILM $12.1 \mathrm{k} 1 \%$
R: VAR COMP 1k, 10 TURN
R: METAL FILM $5.11 \mathrm{k} 1 \%$
R: METAL FILM $10.0 \mathrm{k} 1 \%$
R: METAL FILM 90.9k 1\%
R: FIXED CARBON 10k $5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $5.1 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $3005 \% 1 / 4 W$
R: FIXED CARBON $5.1 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: METAL FILM $10.0 \mathrm{k} 1 \%$
R: METAL FILM 20.0 k 1\%
R: FIXED CARBON $6.8 \mathrm{k} 5 \% 1 / 4 W$
R: FIXED CARBON $10 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: METAL FILM $19.1 \mathrm{k} 1 \%$
R: METAL FILM 1.00k 1\%
R: METAL FILM $4.32 \mathrm{k} 1 \%$
R: METAL FILM $19.1 \mathrm{k} 1 \%$
R: FIXED CARBON $1005 \% 1 / 4 W$
R: FIXED CARBON $3.9 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: METAL FILM $8.25 \mathrm{k} 1 \%$
R: METAL FILM $15.0 \mathrm{k} 1 \%$
R: FIXED CARBON $5.1 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $7.5 \mathrm{k} 5 \% 1 / 4 W$
R: FIXED CARBON $5.1 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON 5.6M 5\% 1/4W
R: FIXED CARBON 2.2k $5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $100 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $22 \mathrm{M} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $100 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $27 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $2.2 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: METAL FILM $19.1 \mathrm{k} 1 \%$
R: VAR COMP 5k, 10 TURN
R: FIXED CARBON $39 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: METAL FILM $24.9 \mathrm{k} 1 \%$
R: METAL FILM 13.0k 1%
R: FIXED CARBON $9.1 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON 2. $2 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON 820k 5\% 1/4W
R: FIXED CARBON $4.7 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$

Part Number
2100-0021
0721-8660
0683-1015
0721-1001
0721-1101
0721-5111
0721-1371
0721-4320
0721-1212
2100-0023
0721-5111
0721-1002
0721-9092
0683-1035
0683-5125
0683-3015
0683-5125
0721-1002
0721-2002
0683-6825
0683-1035
0721-1912
0721-1001
0721-4321
0721-1912
0683-1015
0683-3925
0721-8251
0721-1502
0683-5125
0683-7525
0683-5125
0683-5655
0683-2225
0683-1045
0683-2265
0683-1045
0683-2735
0683-2225
0721-1912
2100-0020
0683-3935
0721-2492
0721-1302
0683-9125
0683-2225
0683-8245
0683-4725

A2 BOARD FMM-2 CONT.

Reference

Designation

R84
R85
R86
R87
R88
R89
R90
R91
R92
R93
R94
R95
R96
R97
R9 8
R99
R100
R101
R102
R103
R104
R105
R106
R107
R108
R109
R110, R111
R112
R113
R114
R115
R116
R117
R118
R119
R120
R121
R122
R123
R124
R125
R126
R127,R128
R129
R130
R131
R132
R133

Description
R: FIXED CARBON $1.5 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON 2.7M 5\% $1 / 4 \mathrm{~W}$
R: FIXED CARBON $10 \mathrm{k} 5 \% 1 / 4 W$
R: FIXED CARBON 6. $2 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $3905 \% 1 / 4 W$
R: VAR COMP 100,10 TURN
R: METAL FILM 649 1\%
R: METAL FILM 18.2 k 1\%
R: VAR COMP $5 \mathrm{k}, 10$ TURN
R: METAL FILM 6.19k 1\%
R: FIXED CARBON 6.2M 5\% 1/4W
R: FIXED CARBON $10 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $3 M 5 \% 1 / 4 W$
R: FIXED CARBON 1.2M 5\% $1 / 4 \mathrm{~W}$
R: FIXED CARBON $12 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $1605 \% 1 / 4 W$
R: FIXED CARBON $12 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $160 \quad 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $120 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: METAL FILM $1.00 \mathrm{k} 1 \%$
R: METAL FILM $19.1 \mathrm{k} 1 \%$
R: FIXED CARBON $120 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: METAL FILM $10.0 \mathrm{k} 1 \%$
R: FIXED CARBON 820k 5\% $1 / 4 W$
R: METAL FILM 9.09k 1\%
R: METAL FILM 221 1\%
R: METAL FILM 2.21k 1\%
R: METAL FILM $90.9 \mathrm{k} 1 \%$
R: METAL FILM 100k 1\%
R: METAL FILM $90.9 \mathrm{k} 1 \%$
R: METAL FILM 100k 1\%
R: METAL FILM $2.21 \mathrm{k} 1 \%$
R: VAR COMP $50 \mathrm{k}, 10$ TURN
R: FIXED CARBON 1.5M 5\% $1 / 4 W$
R: VAR COMP $50 \mathrm{k}, 10$ TURN
R: FIXED CARBON $10 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON 1.5M 5\% 1/4W
R: FIXED CARBON $16 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $27 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $10 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $1 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: METAL FILM 1.00k 1\%
R: FIXED CARBON $27 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $18 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $820 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $10 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $1.5 \mathrm{M} 5 \% 1 / 4 \mathrm{~W}$
R: FIXED CARBON $10 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$

Part Number
0683~1525
0683-2755
0683-1035
0683-6225
0683-3915
2100-0022
0721-6490
0721-1822
2100-0020
0721-6191
0683-6255
0683-1035
0683-3055
0683-1255
0683-1235
0683-1615
0683-1235
0683-1615
0683-1245
0721-100.1
0721-1912
0683-1245
0721-1002
0683-8245
0721-9091
0721-2210
0721-2211
0721-9092
0721-1003
0721-9092
0721-1003
0721-2211
2100-0025
0683-1555
2100-0025
0683-1035
0683-1555
0683-1635
0683-2735
0683-1035
0683-1025
0721-1001
0683-2735
0683-1835
0683-8245
0683-1035
0683-1555
0683-1035

A2 BOARD FMM-2		
Reference		
Designation	Description	Part Number
R134	R: FIXED CARBON 2.7M 5\% 1/4W	0683-2755
R135	R: FIXED CARBON $5605 \% 1 / 4 W$	0683-5615
R136	R: FIXED CARBON $9105 \% 1 / 4 W$	0683-9115
R137	R: FIXED CARBON 4.7k 5\% 1/4W	0683-4725
R138	R: FIXED CARBON 160 5\% 1/4W	0683-1615
R139	not used	
R140	R: FIXED CARBON 6. 2 k 5\% 1/4W	0683-6225
S 1	SWITCH: PUSHBUTTON (10 BUTTON)	3101-0015
U1	IC: 7805C	1826-0014
U2	IC: CA3028	1826-0034
U3	IC: 74121	1821-0014
U4	IC : 4047	1822-0017
U5	IC: MMH0026	1826-0021
U6	IC: UA723	1820-0012
U7, U8	IC: NE5534	1826-0025
U9 thru U12	IC: TL071	1826-0004
U13 thru U17	IC: CA3140E	1826-0001
U18	IC: LM311	1826-0009
U19	IC: 4538	1822-0023
U20	IC: LM311	1826-0009
U21	IC: 4066	1822-0018
U22	IC: LM311	1826-0009
U23, U24	IC: TL071	1826-0004
U25	IC: 78L05CP	1826-0012
U26	IC: LM311	1826-0009
U27	IC: 79L05CP	1826-0017
U2 8	IC: LM311	1826-0009
U29	IC : 4538	1822-0023
U30 thru U32	IC: TLO71	1826-0004
Y1 (note 1)	XTAL: 650 kHz	0410-0003

note 1: Beginning serial number 162080: C7 thru C11, Q1, R11 thru R15 and Y1 are replaced by the A2-1 650 kHz X0 board.

FMM-2 A2-1 BOARD

C201	C: FIXED CERAMIC 0.1 uF 50 V	$0151-0006$	
C202	C: FIXED CERAMIC 0.1 uF 50 V	$0151-0015$	
R201	R: FIXED CARBON $4.7 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$	$0683-4725$	
U201			
U202	IC: $78 \mathrm{LO5CP}$		$1826-0012$
	XO: 650 kHz		$0415-0065$

$$
\begin{aligned}
& \text { FMM-2 A2-1 BOARD } \\
& \text { COMPONENT LAYOUT } \\
& \text { BELAR ELECTRONICS }
\end{aligned}
$$

FMM-2 A3 BOARD DETAIL

See FMM-2 Chassis Wiring Drawing for A3 board schematic.

A3 BOARD

Reference
 Designation

R1
R2
R3
R4
R5
R6
R7
R8
R9

Description
R: METAL FILM 100k 1\%
R: METAL FILM 49.9k 1\%
R: METAL FILM 24.9k 1\%
R: METAL FILM $12.4 \mathrm{k} 1 \%$
R: METAL FILM $10.0 \mathrm{k} 1 \%$
R: METAL FILM 4.99k 1\%
R: METAL FILM 2.49k 1\%
R: METAL FILM 1.24k 1%
R: METAL FILM 1.00k 1%

Part Number

0721-1003
0721-4992
0721-2492
0721-1242
0721-1002
0721-4991
0721-2491
0721-1241
0721-1001
FMM-2
A5 POWER SUPPLY BOARD
COMPONENT LAYOUT

